Gandiva, using LLVM and Arrow to JIT and evaluate Pandas expressions-程序员宅基地

技术标签: 大数据  

从11年前开始,我就一直是LLVM的忠实拥护者,那时我开始使用LLVM处理JIT数据结构(例如AVL),然后使用JIT限制的AST树TensorFlow图中的JIT本机代码。从那时起,LLVM演变为最重要的编译器框架生态系统之一,如今已被许多重要的开源项目使用。

我最近意识到的一个很酷的项目是Gandiva。Gandiva由Dremio开发,然后捐赠给Apache Arrow为此向Dremio团队表示敬意)。Gandiva的主要思想是提供一个编译器来生成LLVM IR,该LLVM IR可以在批处理的Apache Arrow上运行。Gandiva用C ++编写,并具有许多不同的功能,这些功能被实现以构建可使用LLVM进行JIT处理的表达式树。此设计的一个不错的功能是,它可以使用LLVM自动优化复杂的表达式,在对Arrow批处理进行操作时添加本机目标平台矢量化(例如AVX)并执行本机代码以计算表达式。

下图概述了Gandiva:

 

Gandiva工作原理概述。图片来自:https://www.dremio.com/announcing-gandiva-initiative-for-apache-arrow

在本文中,我将构建一个非常简单的表达式解析器,它支持一组有限的操作,这些操作将用于过滤Pandas DataFrame。

用Gandiva构建简单表达

在本节中,我将展示如何使用Gandiva中的树构建器手动创建一个简单的表达式。

使用Gandiva Python绑定到JIT和表达式

在为表达式构建解析器和表达式构建器之前,让我们使用Gandiva手动构建一个简单的表达式。首先,我们将创建一个简单的Pandas DataFrame,其数字范围为0.0到9.0:

import pandas as pd
import pyarrow as pa
import pyarrow.gandiva as gandiva
# Create a simple Pandas DataFrame
df = pd.DataFrame({"x": [1.0 * i for i in range(10)]})
table = pa.Table.from_pandas(df)
schema = pa.Schema.from_pandas(df)

 

我们将DataFrame转换为Arrow Table,重要的是要注意,在这种情况下,这是一个零复制操作,Arrow并不是从Pandas复制数据并复制DataFrame。稍后,我们schema从包含列类型和其他元数据的表中获得。

之后,我们要使用Gandiva构建以下表达式来过滤数据:

(x > 2.0) and (x < 6.0)

该表达式将使用Gandiva的节点构建:

builder = gandiva.TreeExprBuilder()
# Reference the column "x"
node_x = builder.make_field(table.schema.field("x"))
# Make two literals: 2.0 and 6.0
two = builder.make_literal(2.0, pa.float64())
six = builder.make_literal(6.0, pa.float64())
# Create a function for "x > 2.0"
gt_five_node = builder.make_function("greater_than",
                                     [node_x, two], 
                                     pa.bool_())
# Create a function for "x < 6.0"
lt_ten_node = builder.make_function("less_than",
                                    [node_x, six], 
                                    pa.bool_())
# Create an "and" node, for "(x > 2.0) and (x < 6.0)"
and_node = builder.make_and([gt_five_node, lt_ten_node])
# Make the expression a condition and create a filter
condition = builder.make_condition(and_node)
filter_ = gandiva.make_filter(table.schema, condition)

 

现在,该代码看起来有些复杂,但很容易理解。基本上,我们正在创建一棵树的节点,该节点将代表我们之前显示的表达式。这是其外观的图形表示:

检查生成的LLVM IR

不幸的是,还没有找到一种方法来转储使用Arrow的Python绑定生成的LLVM IR,但是,我们只能使用C ++ API来构建同一棵树,然后查看生成的LLVM IR:

auto field_x = field("x", float32());
auto schema = arrow::schema({field_x});
auto node_x = TreeExprBuilder::MakeField(field_x);
auto two = TreeExprBuilder::MakeLiteral((float_t)2.0);
auto six = TreeExprBuilder::MakeLiteral((float_t)6.0);
auto gt_five_node = TreeExprBuilder::MakeFunction("greater_than",
                                                  {node_x, two}, arrow::boolean());
auto lt_ten_node = TreeExprBuilder::MakeFunction("less_than",
                                                 {node_x, six}, arrow::boolean());
auto and_node = TreeExprBuilder::MakeAnd({gt_five_node, lt_ten_node});
auto condition = TreeExprBuilder::MakeCondition(and_node);
std::shared_ptr<Filter> filter;
auto status = Filter::Make(schema, condition, TestConfiguration(), &filter);

 

上面的代码与Python代码相同,但使用的是C ++ Gandiva API。现在,我们用C ++构建了树,我们可以获取LLVM模块并为其转储IR代码。生成的IR充满了样板代码和来自Gandiva注册表的JIT函数,但是重要部分如下所示:

 
; Function Attrs: alwaysinline norecurse nounwind readnone ssp uwtable
define internal zeroext i1 @less_than_float32_float32(float, float) local_unnamed_addr #0 {
  %3 = fcmp olt float %0, %1
  ret i1 %3
}
; Function Attrs: alwaysinline norecurse nounwind readnone ssp uwtable
define internal zeroext i1 @greater_than_float32_float32(float, float) local_unnamed_addr #0 {
  %3 = fcmp ogt float %0, %1
  ret i1 %3
}
(...)
%x = load float, float* %11
%greater_than_float32_float32 = call i1 @greater_than_float32_float32(float %x, float 2.000000e+00)
(...)
%x11 = load float, float* %15
%less_than_float32_float32 = call i1 @less_than_float32_float32(float %x11, float 6.000000e+00)
 

如您所见,在IR上,我们可以看到对函数的调用,less_than_float32_float_32greater_than_float32_float32这就是(在这种情况下非常简单的)Gandiva函数进行浮点比较。通过查看函数名称前缀来注意函数的专业化。

有趣的是,LLVM将在此代码中应用所有优化,并且将为目标平台生成高效的本机代码,而Godiva和LLVM将负责确保内存对齐对于将要使用的AVX等扩展正确无误。向量化。

我显示的该IR代码实际上不是要执行的代码,而是经过优化的代码。在优化的代码中,我们可以看到LLVM内联了函数,如下面的优化代码的一部分所示:

%x.us = load float, float* %10, align 4
%11 = fcmp ogt float %x.us, 2.000000e+00
%12 = fcmp olt float %x.us, 6.000000e+00
%not.or.cond = and i1 %12, %11

 

您可以看到,经过优化后,该表达式现在变得更加简单,因为LLVM应用了其强大的优化功能并内联了许多Gandiva函数。

使用Gandiva构建Pandas过滤器表达式JIT

现在,我们希望能够DataFrame.query()使用Gandiva 实现类似于Pandas 函数的功能。我们将面临的第一个问题是,我们需要解析一个字符串,例如(x > 2.0) and (x < 6.0),之后我们将不得不使用来自Gandiva的树生成器来构建Gandiva表达式树,然后在箭头数据上计算该表达式。

现在,我没有使用表达式字符串的完整解析,而是使用Python AST模块来解析有效的Python代码并构建该表达式的抽象语法树(AST),稍后将使用它来发出Gandiva / LLVM节点。

解析字符串的繁重工作将委派给Python AST模块,我们的工作将主要在此树上进行,并基于该语法树发出Gandiva节点。下面显示了访问此Python AST树的节点并发出Gandiva节点的代码:

class LLVMGandivaVisitor(ast.NodeVisitor):
    def __init__(self, df_table):
        self.table = df_table
        self.builder = gandiva.TreeExprBuilder()
        self.columns = {f.name: self.builder.make_field(f)
                        for f in self.table.schema}
        self.compare_ops = {
            "Gt": "greater_than",
            "Lt": "less_than",
        }
        self.bin_ops = {
            "BitAnd": self.builder.make_and,
            "BitOr": self.builder.make_or,
        }
    
    def visit_Module(self, node):
        return self.visit(node.body[0])
    
    def visit_BinOp(self, node):
        left = self.visit(node.left)
        right = self.visit(node.right)
        op_name = node.op.__class__.__name__
        gandiva_bin_op = self.bin_ops[op_name]
        return gandiva_bin_op([left, right])
    def visit_Compare(self, node):
        op = node.ops[0]
        op_name = op.__class__.__name__
        gandiva_comp_op = self.compare_ops[op_name]
        comparators = self.visit(node.comparators[0])
        left = self.visit(node.left)
        return self.builder.make_function(gandiva_comp_op,
                                          [left, comparators], pa.bool_())
        
    def visit_Num(self, node):
        return self.builder.make_literal(node.n, pa.float64())
    def visit_Expr(self, node):
        return self.visit(node.value)
    
    def visit_Name(self, node):
        return self.columns[node.id]
    
    def generic_visit(self, node):
        return node
    
    def evaluate_filter(self, llvm_mod):
        condition = self.builder.make_condition(llvm_mod)
        filter_ = gandiva.make_filter(self.table.schema, condition)
        result = filter_.evaluate(self.table.to_batches()[0],
                                  pa.default_memory_pool())    
        arr = result.to_array()
        pd_result = arr.to_numpy()
        return pd_result
    @staticmethod
    def gandiva_query(df, query):
        df_table = pa.Table.from_pandas(df)
        llvm_gandiva_visitor = LLVMGandivaVisitor(df_table)
        mod_f = ast.parse(query)
        llvm_mod = llvm_gandiva_visitor.visit(mod_f)
        results = llvm_gandiva_visitor.evaluate_filter(llvm_mod)
        return results

 

如您所见,代码非常简单,因为我不支持所有可能的Python表达式,而是其中的一小部分。我们在此类中所做的基本上是将诸如比较器和BinOps(二进制运算)之类的Python AST节点转换为Gandiva节点。我还更改了&|运算符的语义,分别表示AND和OR,例如在Pandas query()函数中。

注册为Pandas扩展

下一步是使用gandiva_query()我们创建的方法创建一个简单的Pandas扩展:

@pd.api.extensions.register_dataframe_accessor("gandiva")
class GandivaAcessor:
    def __init__(self, pandas_obj):
        self.pandas_obj = pandas_obj
    def query(self, query):
         return LLVMGandivaVisitor.gandiva_query(self.pandas_obj, query)

 

就是这样,现在我们可以使用此扩展来执行以下操作:

df = pd.DataFrame({"a": [1.0 * i for i in range(nsize)]})
results = df.gandiva.query("a > 10.0")

 

由于我们已经注册了一个名为Pandas的扩展程序gandiva,该扩展程序现在是Pandas DataFrames的一等公民。

现在创建一个500万个float的DataFrame并使用新query()方法对其进行过滤:

df = pd.DataFrame({"a": [1.0 * i for i in range(50000000)]})
df.gandiva.query("a < 4.0")
# This will output:
#     array([0, 1, 2, 3], dtype=uint32)

 

 
#这将输出:
#数组([0,1,2,3],dtype = uint32)

请注意,返回值是满足我们实现条件的索引,因此它与query()返回已过滤数据的Pandas不同。

我做了一些基准测试,发现Gandiva通常总是比Pandas快,但是我将在下一篇有关Gandiva的文章中留下适当的基准,因为该文章旨在展示如何将其用于JIT表达式。

而已 !我希望您喜欢我喜欢探索Gandiva的帖子。似乎我们可能会拥有越来越多的Gandiva加速工具,特别是用于SQL解析/投影/ JITing的工具。Gandiva远不止我刚刚展示的内容,但是您现在就可以开始了解它的体系结构以及如何构建表达式树。

– Christian S. Perone

引用本文为:Christian S. Perone,“ Gandiva,使用LLVM和Arrow进行JIT并计算Pandas的表达式”,发表于Terra Incognita,19/01/2020, http://blog.christianperone.com/2020/01/gandiva-using-llvm-and-arrow-to-jit-and-evaluate-pandas-expressions/.
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/ruiyiin/article/details/106208030

智能推荐

从零开始搭建Hadoop_创建一个hadoop项目-程序员宅基地

文章浏览阅读331次。第一部分:准备工作1 安装虚拟机2 安装centos73 安装JDK以上三步是准备工作,至此已经完成一台已安装JDK的主机第二部分:准备3台虚拟机以下所有工作最好都在root权限下操作1 克隆上面已经有一台虚拟机了,现在对master进行克隆,克隆出另外2台子机;1.1 进行克隆21.2 下一步1.3 下一步1.4 下一步1.5 根据子机需要,命名和安装路径1.6 ..._创建一个hadoop项目

心脏滴血漏洞HeartBleed CVE-2014-0160深入代码层面的分析_heartbleed代码分析-程序员宅基地

文章浏览阅读1.7k次。心脏滴血漏洞HeartBleed CVE-2014-0160 是由heartbeat功能引入的,本文从深入码层面的分析该漏洞产生的原因_heartbleed代码分析

java读取ofd文档内容_ofd电子文档内容分析工具(分析文档、签章和证书)-程序员宅基地

文章浏览阅读1.4k次。前言ofd是国家文档标准,其对标的文档格式是pdf。ofd文档是容器格式文件,ofd其实就是压缩包。将ofd文件后缀改为.zip,解压后可看到文件包含的内容。ofd文件分析工具下载:点我下载。ofd文件解压后,可以看到如下内容: 对于xml文件,可以用文本工具查看。但是对于印章文件(Seal.esl)、签名文件(SignedValue.dat)就无法查看其内容了。本人开发一款ofd内容查看器,..._signedvalue.dat

基于FPGA的数据采集系统(一)_基于fpga的信息采集-程序员宅基地

文章浏览阅读1.8w次,点赞29次,收藏313次。整体系统设计本设计主要是对ADC和DAC的使用,主要实现功能流程为:首先通过串口向FPGA发送控制信号,控制DAC芯片tlv5618进行DA装换,转换的数据存在ROM中,转换开始时读取ROM中数据进行读取转换。其次用按键控制adc128s052进行模数转换100次,模数转换数据存储到FIFO中,再从FIFO中读取数据通过串口输出显示在pc上。其整体系统框图如下:图1:FPGA数据采集系统框图从图中可以看出,该系统主要包括9个模块:串口接收模块、按键消抖模块、按键控制模块、ROM模块、D.._基于fpga的信息采集

微服务 spring cloud zuul com.netflix.zuul.exception.ZuulException GENERAL-程序员宅基地

文章浏览阅读2.5w次。1.背景错误信息:-- [http-nio-9904-exec-5] o.s.c.n.z.filters.post.SendErrorFilter : Error during filteringcom.netflix.zuul.exception.ZuulException: Forwarding error at org.springframework.cloud..._com.netflix.zuul.exception.zuulexception

邻接矩阵-建立图-程序员宅基地

文章浏览阅读358次。1.介绍图的相关概念  图是由顶点的有穷非空集和一个描述顶点之间关系-边(或者弧)的集合组成。通常,图中的数据元素被称为顶点,顶点间的关系用边表示,图通常用字母G表示,图的顶点通常用字母V表示,所以图可以定义为:  G=(V,E)其中,V(G)是图中顶点的有穷非空集合,E(G)是V(G)中顶点的边的有穷集合1.1 无向图:图中任意两个顶点构成的边是没有方向的1.2 有向图:图中..._给定一个邻接矩阵未必能够造出一个图

随便推点

MDT2012部署系列之11 WDS安装与配置-程序员宅基地

文章浏览阅读321次。(十二)、WDS服务器安装通过前面的测试我们会发现,每次安装的时候需要加域光盘映像,这是一个比较麻烦的事情,试想一个上万个的公司,你天天带着一个光盘与光驱去给别人装系统,这将是一个多么痛苦的事情啊,有什么方法可以解决这个问题了?答案是肯定的,下面我们就来简单说一下。WDS服务器,它是Windows自带的一个免费的基于系统本身角色的一个功能,它主要提供一种简单、安全的通过网络快速、远程将Window..._doc server2012上通过wds+mdt无人值守部署win11系统.doc

python--xlrd/xlwt/xlutils_xlutils模块可以读xlsx吗-程序员宅基地

文章浏览阅读219次。python–xlrd/xlwt/xlutilsxlrd只能读取,不能改,支持 xlsx和xls 格式xlwt只能改,不能读xlwt只能保存为.xls格式xlutils能将xlrd.Book转为xlwt.Workbook,从而得以在现有xls的基础上修改数据,并创建一个新的xls,实现修改xlrd打开文件import xlrdexcel=xlrd.open_workbook('E:/test.xlsx') 返回值为xlrd.book.Book对象,不能修改获取sheett_xlutils模块可以读xlsx吗

关于新版本selenium定位元素报错:‘WebDriver‘ object has no attribute ‘find_element_by_id‘等问题_unresolved attribute reference 'find_element_by_id-程序员宅基地

文章浏览阅读8.2w次,点赞267次,收藏656次。运行Selenium出现'WebDriver' object has no attribute 'find_element_by_id'或AttributeError: 'WebDriver' object has no attribute 'find_element_by_xpath'等定位元素代码错误,是因为selenium更新到了新的版本,以前的一些语法经过改动。..............._unresolved attribute reference 'find_element_by_id' for class 'webdriver

DOM对象转换成jQuery对象转换与子页面获取父页面DOM对象-程序员宅基地

文章浏览阅读198次。一:模态窗口//父页面JSwindow.showModalDialog(ifrmehref, window, 'dialogWidth:550px;dialogHeight:150px;help:no;resizable:no;status:no');//子页面获取父页面DOM对象//window.showModalDialog的DOM对象var v=parentWin..._jquery获取父window下的dom对象

什么是算法?-程序员宅基地

文章浏览阅读1.7w次,点赞15次,收藏129次。算法(algorithm)是解决一系列问题的清晰指令,也就是,能对一定规范的输入,在有限的时间内获得所要求的输出。 简单来说,算法就是解决一个问题的具体方法和步骤。算法是程序的灵 魂。二、算法的特征1.可行性 算法中执行的任何计算步骤都可以分解为基本可执行的操作步,即每个计算步都可以在有限时间里完成(也称之为有效性) 算法的每一步都要有确切的意义,不能有二义性。例如“增加x的值”,并没有说增加多少,计算机就无法执行明确的运算。 _算法

【网络安全】网络安全的标准和规范_网络安全标准规范-程序员宅基地

文章浏览阅读1.5k次,点赞18次,收藏26次。网络安全的标准和规范是网络安全领域的重要组成部分。它们为网络安全提供了技术依据,规定了网络安全的技术要求和操作方式,帮助我们构建安全的网络环境。下面,我们将详细介绍一些主要的网络安全标准和规范,以及它们在实际操作中的应用。_网络安全标准规范